首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3543篇
  免费   716篇
  国内免费   2011篇
  2024年   3篇
  2023年   230篇
  2022年   209篇
  2021年   328篇
  2020年   326篇
  2019年   372篇
  2018年   273篇
  2017年   306篇
  2016年   333篇
  2015年   271篇
  2014年   274篇
  2013年   258篇
  2012年   221篇
  2011年   226篇
  2010年   218篇
  2009年   270篇
  2008年   219篇
  2007年   284篇
  2006年   241篇
  2005年   212篇
  2004年   174篇
  2003年   152篇
  2002年   137篇
  2001年   124篇
  2000年   96篇
  1999年   77篇
  1998年   84篇
  1997年   37篇
  1996年   64篇
  1995年   33篇
  1994年   27篇
  1993年   24篇
  1992年   41篇
  1991年   22篇
  1990年   26篇
  1989年   15篇
  1988年   6篇
  1987年   5篇
  1986年   5篇
  1985年   10篇
  1984年   4篇
  1983年   1篇
  1982年   8篇
  1981年   4篇
  1980年   4篇
  1979年   3篇
  1978年   1篇
  1977年   1篇
  1976年   3篇
  1958年   8篇
排序方式: 共有6270条查询结果,搜索用时 15 毫秒
41.
Migration is ubiquitous and can strongly shape food webs and ecosystems. Less familiar, however, is that the majority of life cycle, seasonal and diel migrations in nature are partial migrations: only a fraction of the population migrates while the other individuals remain in their resident ecosystem. Here, we demonstrate different impacts of partial migration rendering it fundamental to our understanding of the significance of migration for food web and ecosystem dynamics. First, partial migration affects the spatiotemporal distribution of individuals and the food web and ecosystem-level processes they drive differently than expected under full migration. Second, whether an individual migrates or not is regularly correlated with morphological, physiological, and/or behavioural traits that shape its food-web and ecosystem-level impacts. Third, food web and ecosystem dynamics can drive the fraction of the population migrating, enabling the potential for feedbacks between the causes and consequences of migration within and across ecosystems. These impacts, individually and in combination, can yield unintuitive effects of migration and drive the dynamics, diversity and functions of ecosystems. By presenting the first full integration of partial migration and trophic (meta-)community and (meta-)ecosystem ecology, we provide a roadmap for studying how migration affects and is affected by ecosystem dynamics in a changing world.  相似文献   
42.
Plant density and size — two factors that represent plant survival and growth — are key determinants of yield but have rarely been analysed explicitly in the context of biodiversity–productivity relationships. Here, we derive equations to partition the net, complementarity and selection effects of biodiversity into additive components that reflect diversity-induced changes in plant density and size. Applications of the new method to empirical datasets reveal contrasting ways in which plant density and size regulate yield in species mixtures. In an annual plant diversity experiment, overyielding is largely explained by selection effects associated with increased size of highly productive plant species. In a tree diversity experiment, the cause of overyielding shifts from enhanced growth in tree size to reduced mortality by complementary use of canopy space during stand development. These results highlight the capability of the new method to resolve crucial, yet understudied, demographic links between biodiversity and productivity.  相似文献   
43.
苏雷  向韬  李倩倩  马哲 《微生物学报》2023,63(4):1379-1391
厌氧氨氧化菌(anaerobic ammonia-oxidizing bacteria, AnAOB)的代谢多样性,使得该菌群能够在海洋、湿地和陆地等不同的自然生态系统中广泛分布,甚至在一些极热和极寒环境中也检测到了该菌群的存在。本文回顾并总结了厌氧氨氧化菌在不同生态系统中的发现、分布及脱氮贡献等方面的研究,分析了厌氧氨氧化菌分布的主要环境影响因素。该综述将帮助我们更好地理解全球氮循环中厌氧氨氧化菌的实际角色和功能,并基于厌氧氨氧化(anaerobicammoniaoxidation,anammox)过程,探究能与其进行协作的新型生物脱氮工艺,以期为这些工艺的研发和推广提供生态学基础和新的思考,从而实现脱氮工艺的技术变革。  相似文献   
44.
Eco-evolutionary dynamics, or eco-evolution for short, are often thought to involve rapid demography (ecology) and equally rapid heritable phenotypic changes (evolution) leading to novel, emergent system behaviours. We argue that this focus on contemporary dynamics is too narrow: Eco-evolution should be extended, first, beyond pure demography to include all environmental dimensions and, second, to include slow eco-evolution which unfolds over thousands or millions of years. This extension allows us to conceptualise biological systems as occupying a two-dimensional time space along axes that capture the speed of ecology and evolution. Using Hutchinson's analogy: Time is the ‘theatre’ in which ecology and evolution are two interacting ‘players’. Eco-evolutionary systems are therefore dynamic: We identify modulators of ecological and evolutionary rates, like temperature or sensitivity to mutation, which can change the speed of ecology and evolution, and hence impact eco-evolution. Environmental change may synchronise the speed of ecology and evolution via these rate modulators, increasing the occurrence of eco-evolution and emergent system behaviours. This represents substantial challenges for prediction, especially in the context of global change. Our perspective attempts to integrate ecology and evolution across disciplines, from gene-regulatory networks to geomorphology and across timescales, from today to deep time.  相似文献   
45.
Wildlife trade is a key driver of extinction risk, affecting at least 24% of terrestrial vertebrates. The persistent removal of species can have profound impacts on species extinction risk and selection within populations. We draw together the first review of characteristics known to drive species use – identifying species with larger body sizes, greater abundance, increased rarity or certain morphological traits valued by consumers as being particularly prevalent in trade. We then review the ecological implications of this trade-driven selection, revealing direct effects of trade on natural selection and populations for traded species, which includes selection against desirable traits. Additionally, there exists a positive feedback loop between rarity and trade and depleted populations tend to have easy human access points, which can result in species being harvested to extinction and has the potential to alter source–sink dynamics. Wider cascading ecosystem repercussions from trade-induced declines include altered seed dispersal networks, trophic cascades, long-term compositional changes in plant communities, altered forest carbon stocks, and the introduction of harmful invasive species. Because it occurs across multiple scales with diverse drivers, wildlife trade requires multi-faceted conservation actions to maintain biodiversity and ecological function, including regulatory and enforcement approaches, bottom-up and community-based interventions, captive breeding or wildlife farming, and conservation translocations and trophic rewilding. We highlight three emergent research themes at the intersection of trade and community ecology: (1) functional impacts of trade; (2) altered provisioning of ecosystem services; and (3) prevalence of trade-dispersed diseases. Outside of the primary objective that exploitation is sustainable for traded species, we must urgently incorporate consideration of the broader consequences for other species and ecosystem processes when quantifying sustainability.  相似文献   
46.

Aim

Investigating major freshwater fish flows (translocations) between biogeographic regions and their temporal dynamics and also quantifying spatial patterns and temporal changes in the array of introduced species, and the emergence and distance between major donor and recipient regions.

Location

Global.

Time Period

1800–2020.

Major Taxa Studied

Freshwater fishes.

Methods

We analysed a global dataset on freshwater fish introductions (4241 events of 688 species). Freshwater fish flows were investigated with flow diagrams and χ2 tests, while PERMANOVA (permutational multivariate analysis of variance) was used to test the association between species and regions and temporal shifts. Cluster analysis revealed major recipient areas and composition of the introduced species. Finally, changes in distances between donor and recipient sites were tested with PERMANOVA.

Results

The number of introductions between biogeographic regions mirrored the European and North American dominance before World War II (WWII) and the trends in recreational fishing, biocontrol programmes and food production, especially in the Sino-Oriental region, which has a long tradition of aquaculture and fishkeeping. Over the years, the origins and composition of introduced species changed uniquely in each biogeographic region, although the most introduced species are common to every region. Salmonids and other cold-water species were frequently introduced before the 1950s, whereas tropical ornamental and aquaculture species currently prevail. Distances between donor and recipient sites did not vary over the time. After WWII, the Sino-Oriental region consolidated its dominance and the Ethiopian and Neotropical regions emerged as new global donor and recipient regions.

Main Conclusions

Global policy should focus on tropical ornamental and aquaculture species, which could benefit from global warming, especially in the Sino-Oriental region, because it currently dominates freshwater fish species flows, and the Ethiopian and Neotropical regions, because they recently emerged as important global donor and recipient regions of freshwater fish introductions.  相似文献   
47.
Since the 1970's the management of aquatic habitats has changed from piecemeal monitoring to the ecosystem approach; this was initiated in the North American Great Lakes, comprising social, economic, and environmental aspects. The information included in this paper is based on the presentation made at the Seminar On Ecosystem Approach To Water Management held in Oslo, Norway during 1991. Recently, the multidisciplinary, holistic, and integrated concept of ecosystem health has emerged, and is being advanced for the implementation of an ecosystem approach to environmental management, which has resulted in the formation of an international society (Aquatic Ecosystem Health & Management Society) and the publication of a primary journal (Journal of Aquatic Ecosystem Health). The information has been updated to incorporate new developments and recent progress about the Society and the journal since the Oslo Seminar.  相似文献   
48.

Aim

It is crucial to monitor how the productivity of grasslands varies with its temporal stability for management of these ecosystems. However, identifying the direction of the productivity–stability relationship remains challenging because ecological stability has multiple components that can display neutral, positive or negative covariations. Furthermore, evidence suggests that the direction of the productivity–stability relationship depends on the biotic interactions and abiotic conditions that underlie ecosystem productivity and stability. We decipher the relationships between grassland productivity and two components of its stability in four habitat types with contrasting environments and flora.

Location

France.

Time period

2000–2020.

Major taxa

Grassland plant species.

Methods

We used c. 20,000 vegetation plots spread across French permanent grasslands and remotely sensed vegetation indices to quantify grassland productivity and temporal stability. We decomposed stability into constancy (i.e., temporal invariability) and resistance (i.e., maximum deviation from average) and deciphered the direct and indirect effects of abiotic (namely growing season length and nitrogen input) and biotic (namely plant taxonomic diversity, trait diversity and community-weighted mean traits) factors on productivity–stability relationships using structural equation models.

Results

We found a positive relationship between productivity and constancy and a negative relationship between productivity and resistance in all habitats. Abiotic factors had stronger effects on productivity and stability compared with biotic factors. A longer growing season enhanced grassland productivity and constancy. Nitrogen input had positive and negative effects on grassland productivity and resistance, respectively. Trait values affected the constancy and resistance of grassland more than taxonomic and trait diversity, with effects varying from one habitat to another. Productivity was not related to any biotic factor.

Main conclusions

Our findings reveal how vital it is to consider both the multiple components of stability and the interaction between environment and biodiversity to gain an understanding of the relationships between productivity and stability in real-world ecosystems, which is a crucial step for sustainable grassland management.  相似文献   
49.
From aquatic science to ecosystem health: a philosophical perspective   总被引:1,自引:0,他引:1  
The development of an ecosystem (social, economic, environmental) approach to water management is traced from its origins in the Great Lakes of North America. The focus on health and integrity of ecosystems is an outgrowth of the Lamarckian concept of The Biosphere as a global system of matter, life, and mind. The driving forces behind the development of an ecosystem approach have been negative feedback from excessive demotechnic growth and faith that we can maintain a healthy relationship with Mother Earth.  相似文献   
50.
Ecosystem services are the numerous, essential processes that natural ecosystems provide free to human societies. Examples include the maintenance of breathable air; the movement, storage, and purification of water; the breakdown of wastes; and the provision of food, building materials, and medicines. However, the exponential increases in human population and concomitant environmental destruction make it likely that the level of ecosystem services available per capita will decline. There are three possible scenarios. First, if present practices continue, ecosystem services per capita will surely decline. Second, if a no-net-loss policy is implemented for habitats and species, ecosystem services per capita will still decline due to increases in human population, but the declines will be less precipitous. Third, if habitat is restored (including concomitant ecosystem services) at a rate exceeding that of destruction, then, perhaps the current level of ecosystem services per capita can be maintained, or even expanded to provide increased levels of ecosystem services per capita to more of the world's people.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号